無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性
- 期刊名字:農(nóng)業(yè)工程學(xué)報(bào)
- 文件大?。?/li>
- 論文作者:王明峰,吳宇健,蔣恩臣,陳曉堃
- 作者單位:華南農(nóng)業(yè)大學(xué)材料與能源學(xué)院
- 更新時(shí)間:2020-03-24
- 下載次數(shù):次
第31卷第15期農(nóng)業(yè)工程學(xué)報(bào)Vol.3l No.152162015年8月Transactions of the Chinese Society of Agricultural EngineeringAug. 2015無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性王明峰,吳宇健,蔣恩臣*,陳曉塹(華南農(nóng)業(yè)大學(xué)材料與能源學(xué)院,廣州510642)摘要:連續(xù)熱解是--種高效的生物質(zhì)能轉(zhuǎn)化技術(shù),無軸螺旋式連續(xù)熱解裝置不僅可減輕送料部件的質(zhì)量,而且為熱解揮發(fā)性產(chǎn)物的排出提供了有效空間,是極具發(fā)展前景的連續(xù)熱解裝置。為了解無軸螺旋式生物質(zhì)連續(xù)熱解特性,該文在無軸螺旋連續(xù)熱解裝置上,開展了以稻殼、花生殼和木薯莖稈為生物質(zhì)原料的熱解試驗(yàn),分析了3種生物質(zhì)在不同熱解溫度下的三態(tài)產(chǎn)物分布特性、熱解氣體組分變化規(guī)律及熱解炭的組織結(jié)構(gòu)和表面形貌特征。結(jié)果表明:炭產(chǎn)率隨熱解溫度升高逐漸下降,氣體產(chǎn)率逐漸上升,液體產(chǎn)率先上升再下降,在450C時(shí)達(dá)到最大,產(chǎn)物分布特性與其他熱解反應(yīng)器的一-致:不同原料炭產(chǎn)率由高到低依次為:稻殼>花生殼>木薯莖稈,液體產(chǎn)率由高到低依次為:稻殼>花生殼>木薯莖稈,氣體產(chǎn)率與液體產(chǎn)率相反。熱解氣體組分受溫度影響較大,熱解溫度升高,可燃?xì)怏w組分含量不斷上升,不可燃?xì)怏w組分含量不斷下降,不同原料對(duì)氣體組分含量影響較小。熱解炭的工業(yè)分析結(jié)果與原料的工業(yè)分析結(jié)果存在相關(guān)性,熱解溫度升高,熱解炭中揮發(fā)分含量逐漸下降,固定碳及灰分含量增加,木薯莖稈炭的揮發(fā)分含量最高,花生殼炭的固定碳含量最高,稻殼炭的灰分含量最高;低溫?zé)峤馓康谋砻婀倌軋F(tuán)較為豐富,隨熱解溫度升高官能團(tuán)種類逐漸減少:原料自身結(jié)構(gòu)特性對(duì)熱解炭的表面形貌影響較大,隨著熱解溫度升高,生物質(zhì)原料的表面結(jié)構(gòu)不斷被破壞,熱解炭表面出現(xiàn)孔隙結(jié)構(gòu),花生殼炭與木薯莖稈炭表面孔隙結(jié)構(gòu)比稻殼炭更為發(fā)達(dá)。關(guān)鍵詞:生物質(zhì);熱解;秸稈;無軸螺旋連續(xù)熱解裝置;產(chǎn)物分布;熱解氣組分;熱解炭特性doi: 10.11975/j.issn.1002- 6819.2015.15.030中圖分類號(hào): TK 62文獻(xiàn)標(biāo)志碼: A文章編號(hào): 1002- 6819(2015)-15 -0216- 07王明峰,吳宇健,蔣恩臣,陳曉塹.無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性[J].農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(15):216- 222. doi: 10.1175/.issn.1002- 6819.2015.15.030htp://www.tcsae.orgWang Mingfeng, Wu Yujian, Jiang Enchen, Chen Xiaokun. Biomass continuous pyrolysis characteristics on shaftless screwconveying reactor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15):216 - 222. (in Chinese with English abstract)doi: 10.11975/jissn. 1002-68 19.2015.15.030http://www.tcsae. .org文獻(xiàn)[8]、[9]、 [10]在螺旋送料式連續(xù)熱解裝置上0引言對(duì)玉米秸稈、小麥秸稈和稻殼進(jìn)行了熱解特性研究,中國當(dāng)前面臨著能源枯竭與環(huán)境污染的雙重危機(jī),開表明,已有連續(xù)熱解設(shè)備能夠?qū)⑸镔|(zhì)原料轉(zhuǎn)化生成發(fā)新的潔凈可再生能源受到廣泛的關(guān)注,其中生物質(zhì)能作炭、生物油和熱解氣,在一定范圍內(nèi)隨著熱解溫度的為- -種含能體能源,是清潔豐富的可再生能源",而中國升高,炭產(chǎn)率下降,氣體產(chǎn)率上升,液體產(chǎn)率先升高農(nóng)業(yè)生產(chǎn)剩余物尚缺乏有效的回收利用途徑,開展農(nóng)業(yè)生后降低。連續(xù)熱解的生物炭產(chǎn)率在34% ~42%之間;物質(zhì)的開發(fā)利用研究具有深刻的意義和廣闊的前景。生物油產(chǎn)率在35%左右,包括焦油和木醋液兩部分,熱解:是生物質(zhì)能的一-種 重要利用形式,是指生物質(zhì)主要組分為酸、醇、酮、酚等有機(jī)物;熱解氣產(chǎn)率在.原料在隔絕或者低氧的環(huán)境下受熱裂解的過程,主要生17%~23%之間,成分主要包括: H2、 CO2、CO、CH4成固體炭、可冷凝液體油和可燃?xì)怏w產(chǎn)物123。生物質(zhì)連及其他ChHm等。續(xù)熱解是-一種高效的熱解處理方式,受到國內(nèi)外研究學(xué)與現(xiàn)有的螺旋式連續(xù)熱解裝置相比,無軸螺旋式連者的重視,英國利茲大學(xué)及國內(nèi)的華南農(nóng)業(yè)大學(xué)、山東續(xù)熱解裝置不僅可減輕送料部件的質(zhì)量,而且為熱解揮省能源研究所、中科院蘭州化學(xué)物理研究所和浙江大學(xué)發(fā)性產(chǎn)物的排出提供了有效空間,是極具發(fā)展前景的連等科研單位開展了以螺旋輸送器為核心部件的生物質(zhì)連續(xù)熱解裝置。目前,針對(duì)無軸螺旋式生物質(zhì)連續(xù)熱解特續(xù)熱解裝置的研究工作[47。性的研究較少。本文在自行研制的以無軸螺旋送料器為核心部件的連續(xù)熱解反應(yīng)器上,開展了具有代表性的3種生物質(zhì)稻殼、花生殼和木薯莖稈的熱解試驗(yàn),分析生收稿日期: 2015-05-04 修訂 日期: 2015-07-14基金項(xiàng)目:科技部農(nóng)業(yè)科技成果轉(zhuǎn)化資金項(xiàng)目(2014G2000048); 土壤植物質(zhì)原料的組分差異和熱解溫度對(duì)三態(tài)產(chǎn)物分布、熱解物機(jī)器系統(tǒng)技術(shù)國家重點(diǎn)實(shí)驗(yàn)室開放課題(2014-SKL-07)氣體組分變化規(guī)律及熱解炭的組織結(jié)構(gòu)和表面形貌的影作者簡介:王明峰,男,遼寧鞍山人,講師,主要從事生物質(zhì)能利用研究。響,并與已有熱解炭化技術(shù)進(jìn)行對(duì)比,探討裝置的適應(yīng)州華南農(nóng)業(yè)大學(xué)材料與能源學(xué)院,510642。 Email: wangnmingfeng@scau.edu.n性,為不同生物質(zhì)原料連續(xù)熱解工藝參數(shù)的確定和熱解※通信作者:蔣思臣,男,黑龍江,教授,博士生導(dǎo)師,主要從事生物質(zhì)能產(chǎn)物利用提供理論基礎(chǔ)。利用工程研究。廣州華南農(nóng)業(yè)大學(xué)材料 與能源學(xué)院,510642。Email: ecjiang @ scau.edu.cn第15期王明峰等:無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性2171原料與裝置木科作物莖稈,纖維素、木質(zhì)素含量較為豐富。試驗(yàn)用稻殼、花生殼和木薯莖稈分別購自于廣州某稻谷加工廠、江1.1 原料本試驗(yàn)以3種代表性農(nóng)業(yè)生物質(zhì)稻殼、花生殼和木薯蘇-植物肥料中心和廣西的木薯生產(chǎn)基地,原料經(jīng)粉碎后莖稈為原料,其組分分析1-31見表1,其中,稻殼是禾本科在70'C電熱恒溫干燥箱內(nèi)烘干24h,統(tǒng)- -過 40目篩后裝袋植物外殼,主要含有纖維素、半纖維素成分;花生殼是豆密封,其工業(yè)分析結(jié)果見表1,工業(yè)分析方法參考國標(biāo)科草本植物外殼,主要成分為木質(zhì)素;木薯莖稈是大戟灌GB/T287312012固體生物質(zhì)燃料工業(yè)分析方法。表1原料組分分析與工業(yè)分析Table 1 Proportion of three-component and proximate analysis of biomass materials9組分分析Three component analysis工業(yè)分析Proximate analysis原料纖維素木質(zhì)素水分揮發(fā)分灰分固定碳MaterialsCelluloseHemicelluloseLigninMoistureVolatileAshFixed carbon稻殼21.9019.0017.806.4568.5011.3813.6Rice husk化生元..16.9110.1027.436.0372.733.8717.3Cassavastalk34.3723.8136.258.076.394.511.081.2試驗(yàn)裝置VERTEX70型紅外光譜儀分析表面官能團(tuán)、利用荷蘭FEI試驗(yàn)用無軸螺旋連續(xù)熱解裝置見圖1。熱解裝置由送公司XL-30-ESEM型掃描電鏡觀察表面形貌,熱解氣體料系統(tǒng)、熱解反應(yīng)系統(tǒng)和冷凝收集系統(tǒng)組成,包括調(diào)速組分含量利用安捷倫GC6820氣相色譜儀進(jìn)行檢測(cè)。電機(jī)、進(jìn)料漏斗、無軸螺旋輸送器、熱解爐體,溫控器、2結(jié)果與討論炭箱、冷凝管等主要部件。2.1無軸螺旋連續(xù)熱解裝置的冷態(tài)輸送特性在常溫下開展無軸螺旋連續(xù)熱解裝置的冷態(tài)輸送特性試驗(yàn)研究,控制驅(qū)動(dòng)電機(jī)轉(zhuǎn)速,保證物料在熱解管內(nèi)停留時(shí)間為8 min,試驗(yàn)進(jìn)行30 min后停止,統(tǒng)計(jì)管路內(nèi)口wwwwwwww10叮殘留生物質(zhì)原料質(zhì)量,結(jié)果見表2。14表2冷態(tài)試驗(yàn)管內(nèi)物料殘留量1.調(diào)速器2.驅(qū)動(dòng)電動(dòng)機(jī) 3.聯(lián)軸器4.進(jìn)料斗.熱解反應(yīng)器6.無車6.無軸螺旋輸Table 2 Residues of materials at normal temperature experiment送器7.,加熱爐 8.炭箱 9.出氣口10.冷凝管 1.伴熱帶 12.氣體回?zé)螹aterials殘留量Residues/g13.伴熱帶溫控器14.爐體支架 15.爐體溫控器 16.電機(jī)支架 17.集氣閥稻殼Rice husk9.8花生殼Peanut shell9. Gas outlet 10.Condenser tube 1 I .Heating belt 12 .Gas buming pipe木薯莖稈Cassava stalk24.813.Heating belt controller 14.Frame of heating furmace 15.Heating furnacecontroller 16.Frame of motor 17.Gas collection valve注:熱解管內(nèi)原料停留時(shí)間為8 min,下同。圖1生物質(zhì)無軸螺旋連續(xù) 熱解裝置Note: Conveying residence time is 8min. The same as below.Fig.1 Sketch of biomass continuous pyrolysis reactor熱解管內(nèi)物料輸送存在死角,物料在進(jìn)料口附近區(qū)裝置工作原理如下:粉末狀生物質(zhì)原料經(jīng)由進(jìn)料漏域形成殘留,不同原料的物料殘留量不同。冷態(tài)試驗(yàn)中斗送入熱解反應(yīng)管,由電機(jī)帶動(dòng)無軸螺旋輸送器將物料木薯莖稈殘留量最大,花生殼次之,稻殼殘留量最小。推送至熱解反應(yīng)器的高溫反應(yīng)區(qū),物料在推送過程中完稻殼是禾本科纖維植物外殼,粉碎后更多呈現(xiàn)細(xì)密條狀,成熱解,生成的熱解炭落入保溫炭箱,熱解揮發(fā)物通過螺旋推送時(shí)物料間作用力更大,有利于完全送料。而花炭箱出氣口進(jìn)入冷凝系統(tǒng),液體產(chǎn)物被冷凝收集,不可生殼、木薯莖稈中木質(zhì)素成分較高,粉碎后更多呈現(xiàn)較冷凝氣體引至炭箱底部點(diǎn)燃,保證炭箱溫度大于200"C,小的細(xì)片狀或顆粒狀,物料間作用力作用小,易滯留在管底,導(dǎo)致殘留量增大。防止熱解揮發(fā)物在炭箱內(nèi)冷凝。1.3 試驗(yàn)方法2.2連續(xù)熱解三態(tài)產(chǎn)率分析連續(xù)熱解試驗(yàn)反應(yīng)溫度梯度為350、450、550、650"C,稻殼、花生殼和木薯莖稈連續(xù)熱解三態(tài)產(chǎn)率及管內(nèi)熱解反應(yīng)時(shí)間8 min,炭箱升溫至200"C保溫,采用4組殘留量見表3,其中炭產(chǎn)率、液體產(chǎn)率和管內(nèi)殘留率通過冷凝管對(duì)熱解揮發(fā)物進(jìn)行冷卻,冷卻水溫度為25C,試稱量法獲得,氣體產(chǎn)率通過差減法求得。熱解條件下,驗(yàn)中采用集氣袋收集部分不可冷凝氣體用于檢測(cè)。試驗(yàn)管內(nèi)物料殘留量大小順序與冷態(tài)試驗(yàn)相同,但熱解生成結(jié)束后,統(tǒng)計(jì)熱解炭、液產(chǎn)物及管路殘留物料的質(zhì)量。的焦油氣回滲與原料混合,使原料更易粘附在無軸螺旋原料及熱解炭表征方法:利用長沙友欣YX-GYFX 7701上,導(dǎo)致熱解條件下的殘留量略高。三態(tài)產(chǎn)物分布結(jié)果型全自動(dòng)工業(yè)分析儀進(jìn)行工業(yè)分析、利用布魯克表明,熱解溫度升高后,原料中揮發(fā)分的析出量增大,218農(nóng)業(yè)工程學(xué)報(bào)tp://www.tcsae.org)2015年固體產(chǎn)物質(zhì)量減小,導(dǎo)致炭產(chǎn)率不斷下降141。不同原料不同原料對(duì)氣液兩相產(chǎn)率影響較大。液體產(chǎn)率由高連續(xù)熱解炭產(chǎn)率存在一定差別,稻殼與花生殼炭產(chǎn)率較到低依次為:稻殼>花生殼>木薯莖稈,氣體產(chǎn)率與液為接近,木薯莖稈最低。稻殼中灰分與固定碳含量之和體產(chǎn)率相反。這2部分產(chǎn)物主要由原料水分及揮發(fā)分生最大,達(dá)25.04%,熱解后主要存留于固體產(chǎn)物中,對(duì)炭成,其中揮發(fā)分起主導(dǎo)作用,由原料工業(yè)分析數(shù)據(jù)可見,產(chǎn)率貢獻(xiàn)較大,炭產(chǎn)率最高;花生殼兩者含量之和為3種原料中,木薯莖稈熱解生成的揮發(fā)性產(chǎn)物較多,且更21.24%,炭產(chǎn)率次之;而木薯莖稈兩者含量之和僅為容易發(fā)生二次裂解,利于生成氣體產(chǎn)物;稻殼熱解生成15.59%,且揮發(fā)分含量最高,對(duì)揮發(fā)性物質(zhì)產(chǎn)率貢獻(xiàn)較的揮發(fā)性產(chǎn)物較少且不利于二次裂解反應(yīng),因而更多地大,導(dǎo)致其炭產(chǎn)率最低。生成液體產(chǎn)物;花生殼則介于兩者之間。生物質(zhì)熱解產(chǎn)物分布特性很大程度上是由熱解條件表3原料連續(xù)熱解三態(tài)產(chǎn)率及管內(nèi)物料殘留量(主要是熱解溫度)和原料的性質(zhì)造成的16-181。盡管生物Table 3 Charcoal, liquid and gas yield of continuous pyrolysismaterials and residues in tube質(zhì)原料特性和反應(yīng)溫度有一-定的區(qū)別,但是熱解產(chǎn)物得原料Temperature/溫度炭產(chǎn)率液體產(chǎn)率氣體產(chǎn)率殘留量率的變化規(guī)律基本-致。文獻(xiàn)[19]和[20]在固 定床熱解反Yieldof Yieldof YieldofMaterials C“ “”charcoal/Residues/g應(yīng)器上的研究表明,隨溫度的升高,可燃?xì)夂鸵合嗬淠齦iquid/% fuelgas/%物的產(chǎn)率增大,而熱解炭產(chǎn)率減小。生物質(zhì)在無軸螺旋35041.1227.3329.1311.0連續(xù)熱解裝置上的熱解產(chǎn)物分布特性與其他熱解反應(yīng)器留殼33.6635.2428.5911.4Rice husk5531.3731.9434.2511.1的一致。6528.2640.1.62.3連續(xù)熱解氣體產(chǎn)物特性35.5930.8429.020.5花生殼生物質(zhì)連續(xù)熱解氣體組分含量見圖2。生物質(zhì)原料中C45033.433.04>.23Peanut ;.6318.1元素比例最大,熱解生成的氣體主要由CO2和CO組成2,shell55027.8228.5726.7723.7445.0520.2此外還含有可燃?xì)怏wH2、CH、CH4等。熱解氣體組分3528.3926.437.544.7受溫度影響較大,隨著熱解溫度升高,CO2含量下降,木薯莖稈4524.6319430.6550"C連續(xù)熱解CO2相對(duì)含量約為35%,650"C連續(xù)熱解Cassava22.1444.sta19.722.0351.928.6時(shí)則都低于30%; H2含量明顯上升且增幅顯著,與CO2存在競(jìng)爭(zhēng)關(guān)系,650"C 熱解時(shí)H2相對(duì)含量達(dá)20%~ 25%,氣液兩相產(chǎn)率呈競(jìng)爭(zhēng)趨勢(shì)。熱解溫度升高,液體產(chǎn)率文獻(xiàn)[22]進(jìn)行的玉米秸稈與稻殼熱解試驗(yàn)同樣表明:當(dāng)溫先升后降,在450°C時(shí)達(dá)到最大,此時(shí),稻殼、花生殼和度從400C增加到600'C,H2相對(duì)含量顯著升高,從4%木薯莖稈的液體產(chǎn)率分別為35.24%、33.04%和31.94%;升到28%,與本文研究結(jié)果相近: CO含量略微下降,總氣體產(chǎn)率則相反,先略微下降再上升,在450"C時(shí)最小。體上保持穩(wěn)定數(shù)值; CH4 含量先升高后穩(wěn)定,350"C低溫450^C的熱解溫度為氣液產(chǎn)物競(jìng)爭(zhēng)的分水嶺。研究表明,熱解產(chǎn)生甲烷較少,450"C后 保持相近數(shù)值,占15%~熱解溫度高于450°C時(shí),會(huì)加劇液體產(chǎn)物二次裂解,生成20%; CH4含量逐漸升高,但含量較低。因此,隨著熱氣體產(chǎn)物,導(dǎo)致液體產(chǎn)率下降。因此,欲獲得液體產(chǎn)物,解溫度升高,熱解氣體產(chǎn)物中可燃?xì)怏w組分含量不斷升熱解反應(yīng)溫度應(yīng)控制在450"C附近;欲獲得氣體產(chǎn)物,應(yīng)高,不可燃?xì)怏w組分含量不斷下降,高溫連續(xù)熱解不僅進(jìn)一步提高熱解溫度,增加液體產(chǎn)物的二次裂解!5。有利于氣體產(chǎn)物生成,而且能夠提高氣體品質(zhì)23-251。熱解溫度Pyrolysis temperature/rC23508 450日 550o 65070r60of三400出30口830f; 30一美自20-山小H,COCH,CO,CH售HcoCH。Co,CH,H co CH. CO2 CH,a. Rice huskb. Peanut shellC. Cassava stalk圖2生物質(zhì)連續(xù)熱解氣體組分含量Fig.2 Gas composition of biomass continuous pyrolysis不同熱解溫度下,3種原料的熱解氣組分變化趨勢(shì)基約占25%,可燃?xì)怏w相對(duì)含量達(dá)到75%。本一致,熱解原料對(duì)氣體組分含量影響不大,在試驗(yàn)熱2. 4連續(xù)熱解 炭特性分析解溫度范圍內(nèi),同一熱解溫度 下不同原料各熱解氣組分2.4.1連續(xù) 熱解炭的工業(yè)分析含量差別小于5%,相差不大,在650"C下3種原料的熱連續(xù)熱解炭工業(yè)分析見表4。熱解炭中固定碳含量最解氣中H2約占25%、CO約占30%、CH4約占20%、CO2高,是熱解炭的主要結(jié)構(gòu)成分。隨著熱解溫度升高,熱第15期王明峰等:無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性219解程度加深,生物質(zhì)中揮發(fā)分不斷分解析出,獲得的熱同原料熱解炭的官能團(tuán)豐富度存在一定差異, 花生殼炭解炭的產(chǎn)率不斷減小:而灰分及固定碳大部分存留于熱的表面官能團(tuán)較豐富,稻殼炭表面官能團(tuán)較少。解炭中,其占總體比例逐漸增大,導(dǎo)致熱解炭中揮發(fā)分100百分含量逐漸下降,灰分及固定碳百分含量上升。550c-n 650C表4生物質(zhì)熱解炭工業(yè)分析冒8450-/青7(Table 4 Proximate analysis of bio-charcoal from continuous查60-pyrolysisMaterials原料Temperature/Volatil/% Ash/% Fixed carbon/%揮發(fā)分固定碳器40個(gè)竹行5028.6726.7641.2800000000200050010000 5o00稻殼炭45016.6331.5748.09波長Wave length/em"Rice huskcharcoalso012.7349.22a.稻殼炭a. Rice husk biochar6509.2436.6450.2835034.755.1花生殼炭23.94765.7780-550C-Peanut shell55017.6911.32oof13.6274.24450UNV器路39.5813.2340.46exx三2號(hào)木薯莖稈炭4525.1117.12Cassava stalks518.0518.584000 3500 3000 2300 2000 1500 1000 500波長Wave length/cm'6517.0720.8855.33b.花生殼炭b. Peanut shell biochar不同生物質(zhì)熱解炭的工業(yè)分析存在差異,并與原料的工業(yè)分析結(jié)果相關(guān)。3種熱鮃炎的固定碳含量由高到低資9-650C依次為:花生殼炭>木薯莖稈炭>稻殼炭,揮發(fā)分含量由801s50C-高到低依次為:木薯莖稈炭>花生炭殼>稻殼炭,灰分含450C-量由高到低依次為:稻殼炭>木薯莖稈炭>花生殼炭。稻60殼炭中固定碳含量低于木薯莖稈炭,主要是由于稻殼炭.|的灰分含量較高,占總體比例過大,導(dǎo)致其固定碳含量4000350030002500200015001000 - 5002.4.2連續(xù) 熱解炭表面官能團(tuán)特性波長Wave length/em'450、 550、650C熱解溫度下獲得的3種原料熱解炭:木薯莖稈炭c. Cassava stalk biochar的紅外光譜(FT-IR) 檢測(cè)結(jié)果見圖3。圖3生物質(zhì)熱解炭紅外圖譜450C熱解炭中,3 392 cm'處的吸收峰主要是分子.Fig.3 FT-IR spectra of bio-charcoal之間氫鍵締合的醇、酚的一_OH伸縮振動(dòng),表明存在酚2.4.3連續(xù) 熱解炭表面形貌特性羥基或醇羥基結(jié)構(gòu): 2958、 2921 cem'處的吸收峰主要是烷烴中的C- H的伸縮振動(dòng); s50、650C熱解炭在此3種原料及其350、 450、 550、 650'C熱解炭的掃描3個(gè)波數(shù)下的吸收峰消失。表明,隨著熱解溫度升高,電鏡(SEM)表征結(jié)果如圖4,放大倍數(shù)為1600倍。熱解炭中的一OH基團(tuán)和_ CH2基團(tuán)隨揮發(fā)物的析出而由SEM圖像可見,生物質(zhì)原料表面結(jié)構(gòu)較為平消失,生成CH4、CH、C2H6 等氣態(tài)烴!201。1415~整,經(jīng)熱解后,表面結(jié)構(gòu)被破壞,部分區(qū)域塌陷形成1694cm'為- C=C和C=O振動(dòng)峰,表明生物質(zhì)炭表面了凹凸不平的表面形態(tài),隨著熱解溫度繼續(xù)升高,產(chǎn)含有羧基、羰基等酸性含氧官能團(tuán),此處峰面積減小,生了明顯的孔隙結(jié)構(gòu)。生物質(zhì)原料高溫?zé)峤夂?,其中該類官能團(tuán)不斷減少。1 095 cm'處吸收峰是酚、醚、的有機(jī)質(zhì)被逐漸分解,殘余的細(xì)胞結(jié)構(gòu)形成了炭的孔醇的一C=O伸縮振動(dòng)及一C=C 伸縮和一OH 面外彎曲腺結(jié)構(gòu),溫度越高,表面結(jié)構(gòu)變化越明顯,大孔開始振動(dòng)吸收峰,874、 794cm' 為芳香族化合物C-H變膨脹,并發(fā)育出更多的微孔結(jié)構(gòu)126。不同原料熱解炭形振動(dòng)吸收峰,此處峰面積逐漸增大,表明隨熱解溫度的表面形貌差異較大,花生殼炭與木薯莖稈炭表面孔升高,熱解炭縮合度上升,結(jié)構(gòu)高度芳香化,逐漸形成隙結(jié)構(gòu)比稻殼炭更為發(fā)達(dá),主要是由原料自身結(jié)構(gòu)特芳香化炭結(jié)構(gòu)127-281。性造成的:花生殼本身具有起伏的表面結(jié)構(gòu),木薯莖低溫?zé)峤馍镔|(zhì)炭中各類官能團(tuán)較為豐富,隨熱解稈內(nèi)部為蓬松的絮狀結(jié)構(gòu),這些原料特性更有利于熱溫度升高,高波段的紅外吸收峰消失,官能團(tuán)種類逐漸解炭孔腺生成,而稻殼的表面結(jié)構(gòu)并不發(fā)達(dá),不利于減少,芳香化炭結(jié)構(gòu)逐漸增多。在相同熱解溫度下, 不熱解生成孔隙結(jié)構(gòu)。220農(nóng)業(yè)工程學(xué)報(bào)http://www.tcsae.org)2015年20 Jor20/ma.650C Rice husk Charcoal b. 650C Peanutshelichaharcoal 。650CCassavastalikcharcoald.350CRicehuskcharcoale 3soCPeanushellCharcoalRice husk charcob.650C Peanut shellcharcoal C. 650C Cassava stalk charcoalL520 Kice husk charcoale. 350C Peanut shell ch201m20 220 pm_f. 350C木薯莖稈炭g稻殼原料h.花生殼原料i木薯莖稈原料f. 350C Cassava stalk charcoalg. Rice huskh. Peanut shelli. Cassava stalk圖4生物質(zhì)原料及不同溫度熱解炭SEM圖( 1600X )Fig.4 SEM images of bio-materials and charcoal in different pyrolytic termperature (1600X)trends of biomass pyrolysis technology[D]. Industrial Boiler,3結(jié)論2011(2): 10- 14. (in Chinese with English abstract)1)隨著連續(xù)熱解溫度升高,炭產(chǎn)率逐漸下降,液體3] Demirbas A. Biomass resource facilities and biomass產(chǎn)率先升后降,在450"C時(shí)達(dá)到最大,稻殼、花生殼和木conversion processing for fuels and chemicals[J]. Energy薯莖稈的液體產(chǎn)率分別為35.24%、33.04%和31.94%,氣Conversion & Management, 2001, 42(11): 1357- 1378.體產(chǎn)率與液體產(chǎn)率呈競(jìng)爭(zhēng)關(guān)系。生物質(zhì)在無軸螺旋連續(xù)4] Chidi E Efika, Chunfei Wu, Paul T Williams. Syngas熱解裝置上的熱解產(chǎn)物分布特性與其他熱解反應(yīng)器的一production from pyrolysis-catalytic steam reforming of waste致。熱解氣體主要由CO2和可燃?xì)怏wCO、H2、CH4、CH4biomass in a continuous screw kiln reactor[J]. Journal of組成,隨著熱解溫度升高,可燃?xì)怏w組分含量上升,不Analytical and Applied Pyrolysis, 2012, 95(5): 87-94.可燃?xì)怏w組分含量下降,650°C 連續(xù)熱解可燃?xì)怏w相對(duì)含5] 蔣恩臣,蘇旭林,王明峰,等,生物質(zhì)連續(xù)熱解反應(yīng)裝置量達(dá)75%。熱解氣體組份含量受溫度影響較大,受原料的變螺距螺旋輸送器設(shè)計(jì)[D].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2013, 44(2): .影響不大。121- 124.2)熱解炭工業(yè)分析結(jié)果表明,隨著熱解溫度升高,Jiang Enchen, Su Xulin, Wang Mingfeng, et al. Design of揮發(fā)分含量逐漸下降,灰分及固定碳含量上升。不同原variable pitch spiral conveyor for biomass continuous料的熱解炭工業(yè)分析存在差異,且與原料的工業(yè)分析結(jié)pyrolysis reactor[J]. Transactions of the Chinese Society for果存在相關(guān)性。Agricultural Machinery, 2013, 44(2): 121 : - 124. (in Chinese3)熱解炭紅外光譜分析結(jié)果表明:隨著熱解溫度升with English abstract)高,熱解炭逐漸形成芳香結(jié)構(gòu),縮合度上升,官能團(tuán)種6] 王天崗,孫立,張曉東,等生物質(zhì)熱解釋氫的實(shí)驗(yàn)研究[D].類逐漸減少。同-一熱解溫度,不同原料熱解炭的官能團(tuán)山東理工大學(xué)學(xué)報(bào):自然科學(xué)版,2006, 20(5): 41-43. .豐富度存在差異,花生殼炭的表面官能團(tuán)較豐富,稻殼Wang Tiangang, Sun Li, Zhang Xiaodong, et al. The study of炭表面官能團(tuán)較少。the behavior of hydrogen released from biomass pyrolysis[J].4)掃描電鏡結(jié)果表明,原料經(jīng)熱解后,表面結(jié)構(gòu)被Journal of Shandong University of Technology: Sci & Tech,破壞,部分區(qū)域塌陷形成了凹凸不平的表面形態(tài),隨著2006, 20(5): 41 -43. (in Chinese with English abstract)熱解溫度的繼續(xù)升高,產(chǎn)生了明顯的孔隙結(jié)構(gòu)。原料自I7] 馬隆龍,顏涌捷,孔曉英,等.稻殼和木粉在內(nèi)循環(huán)流化身結(jié)構(gòu)特性對(duì)熱解炭的表面形貌影響較大,花生殼炭與床氣化爐中氣化實(shí)驗(yàn)研究[].農(nóng)業(yè)工程學(xué)報(bào),2006, 22(增木薯莖稈炭表面孔隙結(jié)構(gòu)比稻殼炭更為發(fā)達(dá)。刊1): 151-154.Ma Longlong, Yan Yongjie, Kong Xiaoying, et al. Study on[參考文獻(xiàn)]gasification experiment of wood powder and rice husk in[] Caputo A C, Palumbo M, Pelagagge P M, et al. Economics ofinternally circulating fluidized bed gasifier[J]. Transactionsbiomass energy utilization in combustion and gasificationof the Chinese Society of Agriculture Engineeringplants: Effects of logistic variables[J]. Biomass an(Transactions of the CSAE), 2006, 22(Supp 1): 151-154. (inBioenergy, 2005, 28(): 35-51.Chinese with English abstract)[2]:蔡曉峰, 張濤生物質(zhì)熱解技術(shù)的現(xiàn)狀、發(fā)展趨勢(shì)及研究[J].8] 施建軍,鮑巍濤.生物質(zhì)連續(xù)裂解能源轉(zhuǎn)化工藝與裝置實(shí)工業(yè)鍋爐,2011(2); 10-14.驗(yàn)研究[D].安徽化工,2008, 34(5): 25-28.Cai Xiaofeng, Zhang Tao. Current status and developmentShi Jianjun, Bao Weitao. Experimental research on biomass第15期王明峰等:無軸螺旋連續(xù)熱解裝置上的生物質(zhì)熱解特性pyrolysis set for energization[J]. Anhui Chemical Industry,[17] Sohi S, Loez-Capel E, Krull E, et al. Biochar's roles in soil2008, 34(5): 25- 28. (in Chinese with English abstract)and climate change: A review of research needs[R]. CSIRO9] 王明峰,蔣恩臣,李柏松,等.稻殼連續(xù)熱解特性研究[D].Land and Water Science Report, 2009.太陽能學(xué)報(bào),2012, 33(1): 168-172.[18] OLaughlin J, McElligott K. Biochar for Environ-mentalmanagement: science and technology[J]. Forest Policy andWang Mingfeng, Jiang Enchen, Li Bosong, et al. Study onEconomics, 2009, 11(7): 535 - 536.continuous pyrolysis of rice husk[J]. Acta Energiae SolarisSinica, 2012, 33(1): 168- 172. (in Chinese with English[19]曹青,鮑衛(wèi)仁,呂永康,等.玉米芯熱解及過程分析[J].燃abstract)料化學(xué)學(xué)報(bào),2004, 32(5); 557 -562.[10] 袁艷文,田宜水,趙立欣,等.臥式連續(xù)生物炭炭化設(shè)備Cao Qing, Bao Weiren, Li Yongkang,研制[J].農(nóng)業(yè)工程學(xué)報(bào),2014, 30(13): 203- -210.reaction mechanism analysis of corncob[J]. Journal of FuelChemistry and Technology, 2004, 32(5): 557- 562. (inYuan Yanwen, Tian Yishui, Zhao Lixin, et al. Design andChinese with English abstract)manufacture of horizontal continuous biomass carbonizationequipment[]. Transactions of the Chinese Society of[20]夏祖章,張百良,余泳昌,等農(nóng)業(yè)生物質(zhì)裂解試驗(yàn)研究[J].Agriculture Engineering (Transactions of the CSAE), 2014,農(nóng)業(yè)工程學(xué)報(bào),1995, 11(3): 31-37.30(13): 203 - 210. (in Chinese with English abstract)Xia Zuzhang, Zhang Bailiang, Yu Yongchang, et al.[11] 熊素敏,左秀鳳,朱永義.稻殼中纖維素、半纖維素和木Experiment study on the pyrolysis of agricultural Biomass[J].質(zhì)素的測(cè)定[D].糧食與飼料工業(yè),2005(8): 40-41.Transactions of the Chinese Society of AgriculureEngineering (Transactions of the CSAE), 1995, 11(3): 31-Xiong Sumin, Zuo Xiufeng, Zhu Yongyi. Determination ofcellulose, hemi cellulose and ligin in rice hull[J]. Cereal & Feed37. (in Chinese with English abstract)[21] Muller Hagedorn M, Bockhorn H. Pyrolytic behaviour ofIndustry, 2005(8): 40-41. (in Chinese with English abstrac)different biomasses (angiosperms) (maize plants, straws and[12] 范鵬程,田靜,黃靜美,等.花生殼中纖維素和木質(zhì)素含wood) in low temperature pyrolysis[], Joumal of Analytical量的測(cè)定方法[D].重慶科技學(xué)院學(xué)報(bào):自然科學(xué)版,2008,and Applied Pyrolysis, 2007, 79(1): 136- 146.10(5): 64-65, 67.22] 閆桂煥,孫立,孫奉仲,等,玉米秸和稻殼熱解產(chǎn)物的分Fan Pengcheng, Tian Jing, Huang Jingmei, et al. On the布規(guī)律[J].燃燒科學(xué)與技術(shù),2010, 16(4); 358- 362.determination of cellulose and lignin of peanut shells[J].Yan Guihuan, Sun Li, Sun Fengzhong, et al, DistributionJournal of Chongqing University of Science and Technology:properties of pyrolrsis products of corn stalks and riceNatural Science, 2008, 10(5): 64- 65, 67. (in Chinese withhusks[J]. Journal of Combustion Science and Technology,English abstract)2010, 16(4): 358- 362. (in Chinese with English abstract)[13] Han L P, Steinberger Y, Zhao Y L, et al. Accumulation andpatitioning of nitrogen, phosphorus and potassium in23] 馬林轉(zhuǎn),何屏,王華,等生物質(zhì)熱裂解實(shí)驗(yàn)研究[D]. 云different varieties of sweet sorghum[J]. Field Crops Research,南化工,2004,31(2): 9-11.2011, 120(2): 230-240.Ma Linzhuan, He Ping, Wang Hua, et al. Experiment study[14] 楊海平.油棕廢棄物熱解的實(shí)驗(yàn)及機(jī)理研究[D].武漢:華on pyrolysis of biomass[J]. Y unnan Chemical Technology,2004, 31(2): 9- 11. (in Chinese with English abstract)中科技大學(xué),2005.Yang Haiping. The Experiment and Mechanism Study on[24]呂鵬梅,熊祖鴻,王鐵軍,等生物質(zhì)流化床氣化制取富Palm Oil Wastes Pyrolysis[D]. Wuhan: Wuhan Huazhong氫燃?xì)獾难芯縖J].太陽能學(xué)報(bào),2003, 24(6);: 758- -764.University of Science and Technology, 2005. (in ChineseLi Pengmei, Xiong Zuhong, Wang Tiejun, et al. Biomasswith English abstract)gasificasion in a fluidized bed to produce hydrogen rich[15]廖艷芬,王樹榮,駱仲泱,等.纖維素快速熱裂解試驗(yàn)gas[J]. Acta Energiae Solaris Sinica, 2003, 24(6): 758- 764.研究及分析[J].浙江大學(xué)學(xué)報(bào):工學(xué)版,2003, 37(5):(in Chinese with English abstrac)582- 601.[25]呂鵬梅,熊祖鴻,常杰,等.生物質(zhì)催化氣化制取富氫LiYanfen, Wang Shurong, Luo Zhongyang, et al燃?xì)獾难芯縖].環(huán)境污染治理技術(shù)與設(shè)備, 2003, 4(11):Research on cellulose rapid pyrolysis[J]. Journal of Zhejiang31- 34.University: Engineering Science, 2003, 37(5): 582 - -601. (inLu Pengmei, Xiong Zuhong, Chang Jie, et al. Potential ofhydrogen production from biomass catalytic gasification[J].[16] 許燕萍,謝祖彬,朱建國,等.制炭溫度對(duì)玉米和小麥生Techniques and Equipment for Environmental Pollution物質(zhì)炭理化性質(zhì)的影響[J].土壤,2013, 45(1): 73-78.Control, 2003, 4(11): 31- 34. (in Chinese with EnglishXu Yanping, Xie Zubin, Zhu Jianguo, et al. Effects ofpyrolysis temperature on physical and chemical properties of[26]郭平,王觀竹,許夢(mèng),等.不同熱解溫度下生物質(zhì)廢棄物corn biochar and wheat biochar[J]. Soils, 2013, 45(1): 73-制備的生物質(zhì)炭組成及結(jié)構(gòu)特征[].吉林大學(xué)學(xué)報(bào):理學(xué)78. (in Chinese with English abstract)版,2014, 52(4): 855-860.222農(nóng)業(yè)工程學(xué)報(bào)http://www.tcsae. org)2015年Guo Ping, Wang Guanzhu, Xu Meng, et al. Structure andbagasses-based biochar[J]. Chinese Journal of Tropicalcomposition characteristics of biochars derived from biomassCrops, 2014, 35(3): 595 - 602. (in Chinese with Englishwastes at different pyrolysis temperatures[J]. Journal of Jilinabstract)University: Science Edition, 2014, 52(4): 855 一860. (in28] 李飛躍,謝越,石磊,等.稻殼生物質(zhì)炭對(duì)水中氨氮的吸Chinese with Engish abstract)附[D]環(huán)境工程學(xué)報(bào),2015, 9(3): 1221- 1226.[27]俞花美,陳淼,鄧惠,等蔗渣基生物質(zhì)炭的制備、表征Li Feiyue, Xie Yue, Shi Lei, et al. Adsorption of ammoni及吸附性能[J].熱帶作物學(xué)報(bào),2014, 35(3); 595 - 602.nitrogen in wastewater using rice husk derived biochar[J].Yu Huamei, Chen Miao, Deng Hui, et al. Preparation,Chinese Journal of Environmental Engineering, 2015, 9(3):characterization andadsorption performance of1221 - 1226. (in Chinese with English abstract)Biomass continuous pyrolysis characteristics on shaftlessscrew conveying reactorWang Mingfeng, Wu Yujian, Jiang Enchen*, Chen Xiaokun(College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China)Abstract: Technology of continuous pyrolysis is an effective method of disposing biomass, and the shaftless-screw-conveyingpyrolysis reactor, which is a kind of device with great development prospects, can not only reduce the weight of the conveyingmechanical components, but also provide effective space for the removal of volatile products. At present, there were fewresearches on the biomass continuous pyrolysis characteristics with the shaftless screw conveying reactor. So, the continuouspyrolysis of rice husk, peanut shell and cassava stalk was investigated on the shafless-screw-conveying reactor, and theproduct distribution, the pyrolysis gas components and the pyrolytic charcoal characteristics of the 3 biomasses at differentpyrolysis temperatures were analyzed. The pyrolysis characteristics were compared with the existing pyrolysis technology, andthe material adaptability of the reactor was discussed. This paper provided a theoretical basis for the determination of theprocess parameters of biomass continuous pyrolysis and the utilization of pyrolysis products of different biomass materials.The results showed that the distribution of pyrolysis products was consistent with other pyrolysis reactors. With the increase ofpyrolysis temperature, the charcoal yield decreased gradually, the gas yield increased, and the liquid yield increased firstly andthen decreased, which reached the maximum at 450C. The maximum liquid yield of rice husk, peanut shell and cassava stalkwas 35.24%, 33.04% and 31.94% respectively. The gas yield and liquid yield presented a competitive relationship. Fordifferent bio-materials, the order of the charcoal yield from high to low was: rice husk > peanut shell > cassava stalk, the liquidyield from high to low was: rice husk > peanut shell > cassava stalk, and there were contrary rules between the gas yield andthe liquid yield. The pyrolysis gas was mainly composed of CO2, CH4, H2, C2H4 and CO and the gas component content wasinfluenced by temperature greatly. With the increase of reacting temperature, the content of the combustible gas rose, andnon-combustible gas components declined. The relative content of combustible gas in pyrolysis gas reached 75% at reactiontemperature 650C. Different bio-materials had litte effect on the composition and content of the gas. The industrial analysisresults of the pyrolysis carbon were related to that of the raw materials. With the pyrolysis temperature increasing, the volatilecontent of the pyrolysis charcoal decreased gradually, and the ash and the fixed charcoal content increased. There weredifferences of the functional groups among different kinds of charcoals, the surface functional groups of peanut shell charcoalwas more abundant than that of rice husk charcoal. In the 3 kinds of charcoals, the highest contents of volatile, ash and fixedcarbon were obtained from cassava stalk charcoal, rice husk charcoal and peanut shell charcoal respectively. The structurecharacteristics of raw material had a greater influence on the surface morphology of carbon. The surface functional groups oflow-temperature-pyrolysis charcoal were very rich, the type of the surface functional groups reduced gradually with thepyrolysis temperature increasing. The surface structure of biomass materials continued to be destroyed, and pore structureappeared when the pyrolysis temperature increased. The structure characteristics of raw material had a significant influence onthe surface morphology of carbon, and the surface pore structure of peanut shell charcoal and cassava stalk charcoal was morethan rice husk charcoal.Key words: biomass; pyrolysis; straw; shaftless screw conveying reactor; product distribution; pyrolysis gas components;characteristics of pyrolytic charcoal
-
C4烯烴制丙烯催化劑 2020-03-24
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-03-24
-
生物質(zhì)能的應(yīng)用工程 2020-03-24
-
我國甲醇工業(yè)現(xiàn)狀 2020-03-24
-
石油化工設(shè)備腐蝕與防護(hù)參考書十本免費(fèi)下載,絕版珍藏 2020-03-24
-
四噴嘴水煤漿氣化爐工業(yè)應(yīng)用情況簡介 2020-03-24
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-03-24
-
甲醇制芳烴研究進(jìn)展 2020-03-24
-
精甲醇及MTO級(jí)甲醇精餾工藝技術(shù)進(jìn)展 2020-03-24







