水冷壁氣化爐緊急停車(chē)渣層熱應(yīng)力分析
- 期刊名字:化工學(xué)報(bào)
- 文件大小:367kb
- 論文作者:林偉寧,梁欽鋒,徐贏,劉海峰,于廣鎖,于遵宏
- 作者單位:華東理工大學(xué)煤氣化教育部重點(diǎn)實(shí)驗(yàn)室
- 更新時(shí)間:2020-07-12
- 下載次數(shù):次
第59卷第3期I學(xué)報(bào)Vol. 59 No.32008年3月Journal of Chemical Industry and Engineering (China)March 2008研究論文資水冷壁氣化爐緊急停車(chē)渣層熱應(yīng)力分析林偉寧,梁欽鋒,徐.贏,劉海峰,于廣鎖,于遵宏(華東理工大學(xué)煤氣化教育部重點(diǎn)實(shí)驗(yàn)室,上海200237)摘要:基于實(shí)驗(yàn)室小型水冷壁氣流床氣化爐,研究了兩種油渣漿氣化后在爐內(nèi)壁形成渣層的內(nèi)部結(jié)構(gòu)及組成。建立了氣化爐水冷壁的三維傳熱和應(yīng)力模型,對(duì)氣化妒緊急停車(chē)時(shí)爐壁的熱應(yīng)力變化及其分布進(jìn)行了模擬計(jì)算。計(jì)算結(jié)果表明:渣層中越靠近渣層表面,熱應(yīng)力的變化越大;靠近水冷管和渣釘處的渣層熱應(yīng)力變化相對(duì)較小;渣層表面溫度變化相同時(shí),孔隙率大的渣層產(chǎn)生的形變較大. .關(guān)鍵詞:氣流床氣化爐;水冷壁;渣層;熱應(yīng)力中圈分類(lèi)號(hào): TQ 054 .文獻(xiàn)標(biāo)識(shí)碼: A文章編號(hào): 0438-1157 (2008) 03-0713-08Analysis of thermal stress of slag layer for emergencyshutdown in water wall gasifierLIN Weining, LIANG Qinfeng, XU Ying, LIU Haifeng, YU Guangsuo, YU Zunhong(Key Laboratory of Coal Gasification, Ministry of Education, East China Universityof Science and Technology, Shanghai 200237 , China)Abstract: Inner structures and components of slag layers formed by gasification of two kinds of oil-slagslurry on the furnace wall were studied in a lab-scale water wall entrained-flow gasifier. A mathematicmodel of three dimensional heat transfer and stress was built. Based on the model the change and thedistribution of thermal stress for emergency shutdown were calculated. The results indicated that the closerthe position to the slag's surface, the larger the change of thermal stress in the slag layer. The thermalstress of the slag layer close to the water tube and the slag nail was comparatively small. At the samechange of temperature, the strain in the slag layer with higher porosity was larger.Key words: entrained-low gasifier; water wall; slag layer; thermal stress容量、高效潔凈的燃?xì)馀c合成氣制備的首選技術(shù)。引言目前,氣流床氣化爐中耐火襯里有耐火磚和水冷壁氣流床煤氣化技術(shù)具有煤種適應(yīng)性廣、操作壓兩種。耐火磚襯里價(jià)格昂貴,壽命短[0],需要定期力和溫度高、碳轉(zhuǎn)化率高、生產(chǎn)強(qiáng)度和規(guī)模大等特檢修更換;而水冷璧技術(shù)的核心是“以渣抗渣”,點(diǎn)[2],顯示了良好的經(jīng)濟(jì)和社會(huì)效益,是煤炭大利用氣化過(guò)程中產(chǎn)生的大量熔渣,附著在水冷管2007-07- 30收到初稿,2007- 10- 18收到修改稿。Reeived date: 2007- -07 - 30.聯(lián)系人:廣鎖.第一作者:林偉寧(1981-), 男,碩士研Corresponding aothor; Prof, YU Guangsuo. E- mail: gsyu@究生.ecust. edu cn基金項(xiàng)目:國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目Foundation item:. supported by the National Basic Research(2004CB217703);教育部“長(zhǎng)江學(xué)者與創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃"創(chuàng)新Prograr中國(guó)煤化工。ogram for Changjiang團(tuán)隊(duì)項(xiàng)目(IRT0620); 上海屠光計(jì)劃項(xiàng)目(06SG34); 新世紀(jì)優(yōu)Scholar:YHCN M H Giverity (RTO062),0秀人才支持計(jì)劃項(xiàng)目(NCET-06-0416).the“Iu ugiaun aunguas cuuuauun Commission, China(06SG34) and the Program for New Century Exellent Talents inUniversity (NCET-06-0416).●714●I學(xué)報(bào)第59卷上,形成非常大的熱阻,保護(hù)了水冷管,使得氣化待爐內(nèi)燃燒穩(wěn)定后,切斷柴油進(jìn)料,改為油渣漿進(jìn)裝置可以長(zhǎng)周期運(yùn)轉(zhuǎn)。從長(zhǎng)遠(yuǎn)來(lái)看,水冷壁技術(shù)是.料。為模擬工業(yè)氣化爐實(shí)際運(yùn)行情況,調(diào)節(jié)氧油比今后發(fā)展的主要方向。[即氧氣進(jìn)料量(m' ●h-1) /柴油進(jìn)料量(kg.實(shí)際操作中的-一個(gè)重要現(xiàn)象是,氣化爐緊急停h-1)]為2.2~2.3, 保持爐內(nèi)還原性氣氛。油渣車(chē)后,水冷壁熔渣層會(huì)出現(xiàn)不同程度的裂縫。此類(lèi)漿氣化生成的熔渣附著在耐火材料表面,形成一定裂縫的存在,將導(dǎo)致氣化爐再開(kāi)車(chē)時(shí)產(chǎn)生局部高溫厚度的渣層;水冷壁冷卻水經(jīng)泵(5)強(qiáng)制循環(huán),點(diǎn),容易饒壞水冷壁。這是由于氣化爐運(yùn)行穩(wěn)定且采用熱電偶(4)測(cè)量氣化爐爐壁溫度,信號(hào)經(jīng)模渣層平衡時(shí),水冷壁中熱應(yīng)力處于穩(wěn)定狀態(tài),但緊塊處理后存人計(jì)算機(jī)。為模擬工業(yè)中氣化爐緊急停急停車(chē)操作將引起水冷壁溫度分布變化,從而導(dǎo)致車(chē)情況,在爐壁溫度升至1200C,并趨于穩(wěn)定時(shí),熱應(yīng)力變化,當(dāng)熱應(yīng)力超出渣層的強(qiáng)度時(shí),渣層就快速切斷進(jìn)料,并用氮?dú)獯祾?,保持冷卻水強(qiáng)制循會(huì)出現(xiàn)裂縫。環(huán),使氣化爐內(nèi)壁快速降溫至1000C,再緩慢降不同煤種燃燒后在爐內(nèi)形成的渣層在內(nèi)部結(jié)構(gòu)至常溫。上存在明顯的差異。Ana 等[+4) 研究發(fā)現(xiàn),灰渣的vapour結(jié)構(gòu)形式是決定熱傳導(dǎo)率的重要因素,在給定的溫度下,熱傳導(dǎo)率隨孔隙率的升高而下降。同時(shí),熔DSS-。|咱r渣的內(nèi)部結(jié)構(gòu)和化學(xué)組成對(duì)渣層的強(qiáng)度有很大的影diesel oil西響。因此分別對(duì)兩種灰渣進(jìn)行了氣化實(shí)驗(yàn),測(cè)定冷卻的渣樣的孔隱率和化學(xué)成分,分析其力學(xué)性能,并建立三維傳熱和應(yīng)力模型,計(jì)算爐壁的熱應(yīng)力及nitrogen占2其分布。oxygen日8月slagf syngas1實(shí)驗(yàn)研究1.1油渣漿的制備為縮短實(shí)驗(yàn)時(shí)間、增強(qiáng)實(shí)驗(yàn)效果,選用油渣漿圖1實(shí)驗(yàn)室小型水冷壁氣化爐緊急停車(chē)實(shí)驗(yàn)流程圖Fig. 1 Flowchart of emergency shutdown experiment代替水煤漿進(jìn)料。分別取兩種不同灰渣A和Bin lab-scale water wall gasifier(灰渣A為上海焦化廠氣化熔渣,灰渣B為上海焦1- -computer; 2- -data cllctionin module; 3- drum;化廠熔渣與鍋爐燃燒熔渣組成的混合灰渣,其質(zhì)量4- thermocouple; 5- -pump; 6- -heat exchanger;比為1: 1),其熔融特性如表1所示?;以?jīng)球磨7, 8- -flowmeter; 9- gsifier機(jī)粉碎、磨細(xì),過(guò)125 μm篩,然后按質(zhì)量比30 : 70將灰渣和柴油混合,攪拌均勻得到油渣漿。1.3實(shí)驗(yàn) 結(jié)果及渣樣分析取冷卻的氣化爐內(nèi)壁渣樣,將其表面磨光,得表1灰渣熔融特性到渣樣A和B。分別進(jìn)行電鏡掃描,得到50、Table 1 Ash fusibility temperature500、1000三個(gè)放大倍數(shù)下的渣樣內(nèi)部微觀結(jié)構(gòu)照Ash fusion point/C .片,見(jiàn)圖2。在固定的放大倍數(shù)下拍攝7~10張照Sample SourceDelormation Sofening Hemisphere Flowing片,并運(yùn)用圖像處理軟件ImageJ對(duì)每張照片進(jìn)行temperature temperature temperatureA Shenfu coal 1148115411851186處理,估算局部孔隙率,然后計(jì)算其平均值([-10]。.B slag blends 116012241267本文中選取放大倍數(shù)為50的SEM照片,經(jīng)處理和分析后,得到兩種熔渣的孔隱率,見(jiàn)表2。另運(yùn)1.2實(shí)驗(yàn)裝 置及流程.用X射線熒光光譜技術(shù)分析熔渣中主要組分含量。實(shí)驗(yàn)室小型水冷壁氣化爐采用膜式壁結(jié)構(gòu)。水分析中國(guó)煤化工掛渣過(guò)程十分復(fù)冷管上按一定間距焊接渣釘,水冷管和鰭片上澆鑄雜,Y臺(tái)C N M H G研究孔腺率對(duì)渣層耐火材料SiC.實(shí)驗(yàn)流程如圖1所示,柴油和氧氣強(qiáng)度的影響,故構(gòu)造兩種虛擬渣樣C和D,使其孔隙一起經(jīng)噴嘴進(jìn)入熱模氣化爐 (9) 進(jìn)行點(diǎn)火操作,率分別為0.170和0.200,組成與渣樣B相同。第3期林偉寧等:水冷壁氣化爐緊急停車(chē)渣層熱應(yīng)力分析●715●(x50)(x500)(10000a) sample AF(<500)(x1000)(b) sample B,圖2熔渣樣品在不同放大倍數(shù)下的掃描照片F(xiàn)ig.2 SEM image of slag sample at different magnification表2熔渣孔隙辜及組成Table 2 Porosity and composition of slagComposition/%(mass)AverageporositySiO2AlzOzCaOFezOsNa2OMgOTiOrK2OA0. 16943. 9130. 4512. 837.641.370.580.870.62B0. 23542. 8623. 0718. 289. 791.141.111. 101.06表3材料物性參數(shù)Table 3 Material characteristice parametersDensity,pYoung' s modulus, EExpansion coefficient,qMaterialPoisson ratio+μ/kg.m-3/MPa/W. (m. K)-1/K-1slag A19802. 59X10*0.200. 508. 00X10-6slag B1. 94X1040. 200.347.60X10-6slagC18542. 08X1040.457. 60X10-6slag D17872. 00X1040.39stainless steel7900(2. 09-0.0080)X105.0. 30(16. 28+0. 030)x 10-8C31601. 52X10*0. 163.804. 60X10-8采用XRD(X射線衍射)技術(shù)分析熔渣的礦壁溫度及水冷管內(nèi)的傳熱系數(shù)變化不大,渣層熱應(yīng)物組成。分析結(jié)果顯示:熔渣A中,以鈣黃長(zhǎng)石力處于穩(wěn)定狀態(tài);由于在水冷壁上焊有渣釘,在垂和赤鐵礦為主,而熔渣B的主要礦物質(zhì)則為拉長(zhǎng)直方向存在熱流,所以將問(wèn)題看作是三維、穩(wěn)定、石和鈣長(zhǎng)石。假設(shè)熔渣C和D的礦物組成與B相無(wú)內(nèi)熱源的導(dǎo)熱問(wèn)題。在建模和離散求解時(shí),引人同。結(jié)合熔渣孔隙率及組成,獲得4種熔渣的物性如下假設(shè):參數(shù)11],見(jiàn)表3。(1)視選取的水冷壁局部為平板,忽略其曲率,中國(guó)煤化工2傳熱和應(yīng)力分析模型MHCNMHG為各向同性;以實(shí)驗(yàn)室小型氣化爐水冷壁為原型建立模型。(3)水冷管內(nèi)壁與工質(zhì)的對(duì)流傳熱系數(shù)及工質(zhì)膜式水冷壁氣化爐在運(yùn)行穩(wěn)定及渣層平衡時(shí),爐內(nèi)的溫度沿管內(nèi)壁四周均布;●716●化I學(xué)報(bào)第59卷(4)氣化爐內(nèi)產(chǎn)生的合成氣對(duì)水冷壁的正壓力應(yīng)力邊界條件為式(4)。該模型中應(yīng)變的物理方程很小,相對(duì)于爐壁的熱應(yīng)力忽略不計(jì);為式(5), 另根據(jù)軸對(duì)稱(chēng)性質(zhì)得邊界條件式(5)熔渣層全部設(shè)定為固定層,其中組成和氣(6)([40??拙鶆蚍植迹飨蛲??!?5+o=+x=oytz以水冷管中心為原點(diǎn),如圖3所示建立直角坐標(biāo)系。包括直簡(jiǎn)段水冷管、鰭片、渣釘、耐火照++ aox+y-o(3)材料層和渣層。參照表3選取水冷壁各材料物性++ o= +2=0參數(shù)。X=ol+Txm +τun'Y =o,m+r,l +rgn(4)Z=o,n+rml +rxm..- a+po2(+5$+E制)E(1-p),= (1 +2(1-2)段22(s+1p+占)4(1+ p)(1一r險(xiǎn)蘭面(+與+制)E。= 201+月%,5= 20+mX,= = 2(1+mY% J5)圖3計(jì)算模 型示意圖e,=0 (x=0,工=號(hào))6)Fig.3 Sketch map of calculation model式中o. o,、0。、y、tx、t為應(yīng)力分量; X、1- watercooled tube; 2- -fin 3- slag nail;Y、Z為坐標(biāo)載荷分量; l. m、n為邊界法線方向4-refractory lining; 5- coal slag與x、y、z軸夾角。由于熱應(yīng)力滿足線性疊加原理,因此,首先計(jì)3模擬計(jì)算算不同爐壁溫度下的熱應(yīng)力,然后計(jì)算其差值即為基于上述假設(shè),建立水冷壁傳熱和熱應(yīng)力計(jì)算溫度變化引發(fā)的熱應(yīng)力。為描述方便,根據(jù)Mises的數(shù)學(xué)模型。采用有限元方法,對(duì)溫度場(chǎng)與應(yīng)力場(chǎng)屈服準(zhǔn)則,在簡(jiǎn)單拉伸應(yīng)力狀態(tài),應(yīng)用等效應(yīng)力的進(jìn)行耦合計(jì)算1[]。在直角坐標(biāo)系中,對(duì)于導(dǎo)熱問(wèn)定義式估算渣層熱應(yīng)力[5題,有穩(wěn)態(tài)導(dǎo)熱微分方程o=√(a-0)*+(0-0)+(0-o)門(mén)(7>(1京+j +z =0氣化爐爐壁溫度屬于第1類(lèi)邊界條件;水冷管4結(jié)果分析與工質(zhì)間的換熱為強(qiáng)制對(duì)流換熱,傳熱系數(shù)為hs;在計(jì)算模型中分別選取如下(1)、 (2)、 (3)、水冷壁與氣化爐爐殼間為氣隙層,包括自然對(duì)流換(4)位置的4組節(jié)點(diǎn)作為研究對(duì)象,考察向火面溫?zé)崤c輻射換熱,相應(yīng)的傳熱系數(shù)可以按式(2)度由1200C降至1000C時(shí),各組節(jié)點(diǎn)的溫度、應(yīng)計(jì)算力和應(yīng)變的變化和分布情況,其結(jié)果如圖4~圖6h.= Ac(GrPr)"所示。(1) x=0, z=0,沿y軸方向的一系列節(jié)點(diǎn);h.=ec[(0)'- ()]/<τ-T.>(2(2) x=0, z=15 mm,沿y軸方向的一系列h=h+h,節(jié)點(diǎn)式中h為對(duì)流 輻射聯(lián)合傳熱系數(shù)。中國(guó)煤化工y軸方向的一系熱應(yīng)力的產(chǎn)生必須具備兩個(gè)基本條件:溫度變列節(jié)MHCNMHG化和約束。根據(jù)牛頓運(yùn)動(dòng)定律,可知對(duì)于一般三維(4) x=55 mm, z=0, 沿y軸方向的一系列物體的受力情況,其空間力學(xué)平衡方程為式(3),節(jié)點(diǎn)。第3期林偉寧等:水冷壁氣化爐緊急停車(chē)渣層熱應(yīng)力分析●717●■sample A .20000●sample B▲sampleC150▼sample DI50g 1001000t50-100 10203040 5000。position/mm(a) nodes of group 1(b) nodes of group 2■sample A-10010203040500-10 σ(c) nodes of group 3(d) nodes of group 4圖4各組節(jié)點(diǎn)溫度變化Fig. 4 Temperature change of different nodes. SampleB20|. sample D●sample Dso|6030-1001020040 50-10 01020 30 40.Sampie R, 40吳20號(hào)10E 20f10-10010203040 5中國(guó)煤化工40 50MYHCNMHG圖5各組節(jié)點(diǎn)熱應(yīng)力變化Fig. 5 Thermal stress change of different nodes●718●化工學(xué)報(bào)第59卷■sample A●sample B .●sample B▲sampleC▲sample C!7●sample D●sarmple D-10 00售20304050position/mma) nodes of group 1b) nodes of group 2.....................9十●sample A, sample Bs sampleC▲sample c. sample D▼sample D6復(fù)60:m*********8中4-10 0 102030 40 50-1001020304050(c) nodes of group 3(d) nodes of group 4圖6各組 節(jié)點(diǎn)應(yīng)變分布Fig. 6 Displacement of different nodes4.1 溫度變化與分布SiC中a趨于平穩(wěn);耐火材料SiC與渣層接合處由圖4可以看出,向火面溫度由1200C降至0a急劇上升;渣層中Oo呈增大趨勢(shì),其表面Oσ1000C時(shí),水冷壁模型中各組節(jié)點(diǎn)溫度變化的絕對(duì)達(dá)到最大。渣層的礦物組成相同時(shí),渣層中0a隨.值OT沿y軸正方向呈上升趨勢(shì)。不同材料中OT孔隙率的升高而增大。變化梯度存在差異,渣層中OT變化明顯大于水冷.3 應(yīng)變分布與比較壁其他部分,反映了渣層良好的隔熱效果。由于水.由圖6可以看出,不同內(nèi)部結(jié)構(gòu)的渣層中應(yīng)變冷管和渣釘?shù)睦鋮s作用,模型中正交于y軸的截量|0e|差異顯著。渣層A中各節(jié)點(diǎn)的|0e|為.面內(nèi)節(jié)點(diǎn)的sT沿x軸正方向和z軸正方向都呈增(4. 716~4.977) X10-4 m,而渣層B中相同節(jié)點(diǎn).大趨勢(shì),即靠近水冷管和渣釘?shù)牟糠譁囟茸兓鄬?duì)在相近的Oσ作用下|Oe |卻大得多,為(9. 113~較小。渣層的熱導(dǎo)率隨其孔隙率的升高而減小,在.9.234) X 10-+ m,渣層C中|Oe|為(4.578 ~溫度變化及分布上表現(xiàn)為:除表面溫度相同外,隨4.722) X10-* m,渣層D中|Oe|為(5. 722 ~孔隙率的增大,渣層中溫度降低,sT減小,但6.095) X10-+ m.渣層的礦物組成相同時(shí),渣層OT變化梯度增大。中|Oe |隨孔隙率的升高而增大。由圖2可見(jiàn),渣4.2 熱應(yīng)力變化與分布樣B的孔隙率較大,且存在尺寸較大、形狀不規(guī)由于材料的熱物理性質(zhì)不同,導(dǎo)致水冷壁各材則的氣孔。OE|的分析結(jié)果說(shuō)明在相同應(yīng)力作用料中熱應(yīng)力變化Oσ差異顯著,不同材料接合處Oσ下,渣層B更易產(chǎn)生形變,結(jié)構(gòu)相對(duì)不穩(wěn)定。存在突變;靠近水冷管和渣釘?shù)脑鼘又蠴σ相對(duì)較中國(guó)煤化工分區(qū)域,在緊急小,如圖5所示。由圖5 (d)可見(jiàn),沿y軸正方停車(chē)lYHCNMHG;渣層A表面大向,鰭片中OB先減小后增大,變化并不明顯;而多數(shù)的裂紋并不明顯[如圖7 (a)所示],而渣層B鰭片與耐火材料SiC接合處a驟降;耐火材料表面的裂紋則清晰深刻得多[如圖7 (b)所示]。林偉寧等:水冷壁氣化爐緊急停車(chē)渣層熱應(yīng)力分析●719●before experimentafer experiment(a) surface of slag layer Aafter experiment(b) surlace of slog layer B圖7實(shí)驗(yàn)前后照片對(duì)照Fig. 7 Photos comparison of experiment[2] Steinberg Meyer, Cheng Hsing C Modern and prospective5結(jié)論technologies for hydrogen production from fssl fuels.'International Journal of Hydrogen Energy, 1989, 14(1)不同油渣漿氣化后附壁形成的渣層內(nèi)部結(jié)(11); 797-820構(gòu)和礦物組成有所差異;渣層的礦物組成相同時(shí),[3] Yu Guangsuo (于廣鎖), Niu Miaoren (牛苗任),Wang在實(shí)驗(yàn)選取的孔隙率范圍(0. 170~0. 235)內(nèi),隨Yifei (王亦飛),Liang Qinfeng (粲欽鋒),Yu Zunhong(于遵宏)。Application status and development tendency of孔隙率的升高,熔渣的密度降低,熱導(dǎo)率和彈性模coal entrained-bed gasification. Modern Chermical Industry量減小,熱膨脹系數(shù)無(wú)明顯變化。(現(xiàn)代化工), 2004, 24 (5); 23-26(2)氣化爐水冷壁中溫度改變將導(dǎo)致熱應(yīng)力改[4] Ana Zbogar, Flemning J Frandsen, Peter Arendt Jensen,變;水冷壁結(jié)構(gòu)中不同材料Oa差異顯著;渣層Peter Glarborg. Heat transter in ash deposits: a modelingtool-box Progress in Energy and Combustion Science ,中,越接近其表面,O越大,靠近水冷管和渣釘2005,31; 371-421處相對(duì)較小。[5]Rezaei H R, et al. Thermal conductivity of coal ash and(3)在本實(shí)驗(yàn)操作條件下,與灰熔點(diǎn)較高的灰slags and models used. Fuel, 2000, 79; 1697-1710渣氣化形成的渣層相比,灰熔點(diǎn)較低的灰渣氣化形[6Marci Giuseppe, Augugliaro Vincenzo, et al. Preparationcharacterization and photocatalytic activity of polyerstelline成的渣層的孔隙率相對(duì)較低,并且表現(xiàn)出更高的強(qiáng)ZnO/TiOr systems ( I ): Surface and bulk度;渣層的礦物組成相同時(shí),孔隙率高的渣層在相characteriation. Journal of Physical Chemistry B, 2001,同熱應(yīng)力變化條件下將產(chǎn)生較大形變,結(jié)構(gòu)相對(duì)不105 (5); 1026-1032穩(wěn)定,容易破裂。[7Wilcox D, Dove B, McDavid D. Image Tool. San Antonio:The University of Texas Health Science Cenre, 1995References[8] Drzazga Wlodrimierz, Paluszynski Jaroslw, SlowkoWVitold.Three dimensionalcharacterization[1] Gong Xin (費(fèi)欣), Guo Xiaolei (郭曉鐳),Dai Zhenghua中國(guó)煤化工urememt Science and(代正華),Yu Zunhong (于遵宏), et al. New-typegsification technology of pressurized entained-lw for[9CHCNMHGsJ. Imoge pocsipulverized coal Modern Chemical Industry (現(xiàn)代化I),with ImageJ. Biophotonics International, 2004, 11 (7);2005, 25 (3); 51-5436-42化I學(xué)報(bào)第59卷[10]’Hlliard J E Measurement of volume in volume//DeHoff Rresidual thermal stress in ceramic-lined composite pipeT, Thines F N. Quantitative Microscopy. New York:prepared by centrifugal-SHS. Materials Science ancMeGraw Hill, 1968: 45-76Engineering A, 2007, 460/461; 130-134[11]Iopman H B. Physical Properties of Rocks and Minerals.[14]Noda Naotake. Thermnal Stresses. New York: Taylor &Bejing: Science Press, 1985Francis, 2003[12] Zhou Junhu (周俊虎),Yang Wejuan (楊衛(wèi)娟), Liu[15] Cong Jun (龔俊),Lang Fuyuan (郎福元),Wang MinJianzhong (劉建忠), etal. Thermal stress of slag on wall(王珉),Li Jjianhua (李建華),Liu Zhan (劉展). Mixedtube created by boiler load shift. Journal of Chemicalmode fracture criteria based on unified strength theory.Indusry and Enginering (China)(化工學(xué)報(bào)), 2003,54Jourmalof Mecharical Strength (機(jī)械強(qiáng)度), 1995, 25(12); 1678-1682(3); 347-351[13] Wang Yufei, Yang Zhenguo. Finite element analysis of中國(guó)煤化工MYHCNMHG
-
C4烯烴制丙烯催化劑 2020-07-12
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-07-12
-
生物質(zhì)能的應(yīng)用工程 2020-07-12
-
我國(guó)甲醇工業(yè)現(xiàn)狀 2020-07-12
-
石油化工設(shè)備腐蝕與防護(hù)參考書(shū)十本免費(fèi)下載,絕版珍藏 2020-07-12
-
四噴嘴水煤漿氣化爐工業(yè)應(yīng)用情況簡(jiǎn)介 2020-07-12
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-07-12
-
甲醇制芳烴研究進(jìn)展 2020-07-12
-
精甲醇及MTO級(jí)甲醇精餾工藝技術(shù)進(jìn)展 2020-07-12
